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BRANCHING METHODS OF ANALYZING A DISTURBANCE OF THE CRITICAL-PRESSURE 

SPECTRUM OF SHELLS OF REVOLUTION AND SOME APPLICATIONS OF THESE METHODS 

V. V. Larchenko UDC 539.3:534.1 

New phenomena in the branching loss of stability of an elastic shell were discovered in 
a study conducted for a singular perturbation. It was found in particular that disturbance 
of the middle surface and the load is accompanied by a change in the type of bifurcation of 
the branch points, the rotation group of the minor equilibrium mode, and the multiplicity 
of the eigenvalues. Conditions were formulated for the functionals of the branching equa- 
tion for which the multiplicity increases to the specified value. This makes it possible to 
significantly simplify the theory of models of instability. To establish the above facts, 
it is important that the spectrum be crowded at ~ + 0 (~ is a natural small parameter with 
higher derivatives). A theoretical-empirical method of evaluatingthe effectiveness of 
electrophysical loading of thin shells was proposed within the framework of the completed 
study. 

I. Let (r, ~) be a polar coordinate system whose origin is located at the tip of a 
shallow spherical segment. We will examine the below Marguerre-Vlasov problem [1-3] in the 
space 

p2(3-~)A2w = 0AO + ~q[L(w, O) @ L(w~, ~)1 + ~ (r), (r, ~) ~ Q, 

~(h-~)A2~ = --0Aw -- pq[L(w, w) + 2L(w, w~)]/2, 

w = w '  = 0 ,  A ~ = B O  = 0 ,  r E  a~, ( 1 . 1 )  
rL(u, v) = u"Av + u"Au -- 2r-lBuBv, A( . )  = (.)' + r - l ( . ) " ' ,  

B(.) = [(.)' -- r ~ ( . ) ] i ~ ( r )  = p + 6q(r), p ~ {Pn}, [5] << i.  

Here, w is the normal displacement of the middle surface; ~ is the Airy stress function; 
~(r) is the external pressure; {Pn} is a sequence of critical pressure of a perfectly spherical dome; 
6 is the density of the pressure disturbance; U s = h/a7 is a natural small parameter; h is 
the thickness; 2a = diam Q; ?~ = 12ii -- ~2); ~ ~ (0, 0, 5) is the Poisson's ratio; 8 is a half- 
angle; w~(r, ~) is a 2~-periodic disturbance of the middle surface such that w~(r, ~) ~ :~r (Q), 
[Tnt<< 1, II~(r)llc ~ t ,  where 
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If the solution of problem (i.i) is known, then the transition to dimensional variables is 
made by means of the formula 

F : p)~-~)+qEa~'q ), {W,  W~} : a ~ { w ,  w~}, ( 1 . 2 )  
R = ar, {Qv, 98} = ~ t2<h-1) +q EV{p, 5 }. 

Here and below, k and q are numerical parameters for which the sought unknowns in (1.2) have 
the order 0(i) at p § O. 

2. Projecting the perturbation of the solution in eigenvalues of problem (i.i), we 
follow [4] and introduce the small parameter Sn" We represent the vector-function (w, r in 
the form of a Poincar6-Lyapunov series in the neighborhood of a simple nonaxisymmetric 
branch point : 

~ S  ~ 2 w o)(z)dz+~,r~c%(r)cos (~+~,~ g ,~ ( z )dz+r~n(r )cos2nq)  + . . . .  
i 1 (2.1) 

Op N o / (z) dz + ~nr'aqJn (r) cos nq) + ~ ~n (z) dz + rZ~Sn (r) cos 2nq~ + . . ,  
0 

Using (2.1), we reduce the Marguerre-Vlasov system to a recurring sequence of boundary-value 
problems. The zeroth approximation for ~n: 

~=(a-k)~%r ~ = Or/+ ~q~o/+ (I/2)pr 2, ~2(h-l) ~ / ___ 

--Or0) -- (t/2)~qo) ~, ( 2 . 2 )  
d - 1  d o(1) = / ( i )  ----- 0, l i m l ( o r - l l < o o ,  l i m ] / r - 1 ] < o o ,  ~ t ( . ) = r ~ r  ~7-r(.). 

r-~O r-~O 

The nonlinear eigenvalue problem for the parameter p has the form 

~s ~ = 0 A n ~  n + Ixq[Ltno)n + L~'~tpn], 

~2(h-1)hn2q)n ---- --O An on - -  t~q L~=o),~, ( 2 . 3 )  
t 

r 1,  ~= %~ 0, l i m ]  ' - a  l i m ]  " - 1  = = -= znr [ ~ (x,, xnr < oo, Xn = COn, q)n, 
r-~O r-~O 

where An( . )  = (.)" + (2n + l)K-x(.) ' ;  L~( . )  = r - l u ' [ ( . ) '  + ( n - -  nZ)r-Z(.)] + r - l u [ u  " + 2 n r - l ( . )  ' + nr-Z(n - 
I ) ( . ) ] .  

We write the second approximation of ~n for the axisymmetric components as 

12(k-1),j~ lpn ~ --Org n --  [lqo)g n --  (t./2)~-1=((%, 0,0, 
Q,(o~, r = (l/2)~qr~n[o.(%(y.~#. --  n-~ + (o~ r~ , )  + ( 2 . 4 )  

n~r-=(o,q~,~], a,,(.) = nr - l ( . )  + ( . ) ' ,  

g= (1) = , ~  (t) = O, l im I r-~g ,~ I < co, l im [ r-X~pn [ < co. 
r--)O r-~O 

The b o u n d a r y - v a l u e  p r o b l e m  f o r  t h e  n o n a x i s y n a n e t r i c  componen t s  o f  t h e  P o i n c a r 6 - L y a p u n o v  
a p p r o x i m a t i o n  i s  a s  f o l l o w s :  

~2(3--h)a 2~n'~n : Oa2n~n  -+" ~q [ L~"&~ q-- L~nrn]  -'1- (Z n ((On, q)n), 

' 2(h--1)h2 "~ 0A2nyn - -  ]lqL~n'~n - -  (i/2) a .  ((%, (on), F ~ t-a2n~q ~ - -  

2ctn(o)n, epn) (~nO)nS~q~n + SnO)na?nq~,, + 2n~r-:m~o)nmn(pa)~t , 
9 . ( . ) =  ( . ) "  + 2nr-a(.) '  - Z.(.), l . ( . )  = (n - n2)r-Z(.), s~(-) = ( 2 . 5 )  

r -~ ( . ) '  + / . ( . ) ,  m . ( . )  = r-a(.)  - z=(.), 
t 

[ ~ ( t ) = [ ~ ( 1 )  O, l i m [ [ ~ ' = r - * l < o o ;  l lml  " - ~  = [~=r < o o ,  1 ~ = % ,  6. .  
r ~ 0  r-~0 

The derivation of the branching equation was presented in [5]. Some of its features 
were explained in [4]. In the notation we have adopted, it has the form 

T 3 ~t ... : Gn (~n, 6, n) ~ 4~nn~o "t- xnL~ + 4~n6L~a + O, 
1. 1 

L ~  ----- S g~' (r) S (r) dr, I_~ = ~q j' ],~ (r) On ((on, T. ,  e), 1, r) dr, 
0 0 

1 

'Y{ I ' ] Lane = ~ r an+x %,,a= (o),~, q%) + -~ 5nan (o)=, r - -  
0 
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- -  ~ (~n, ~ )  - -  2g=Q~ ((0n, r dr, Ha ( ' )  = d ~  ( . )  + d'~n ( . ) ,  

S (r) = t" n (t') dt" dt, Dn (~n, ~n, ~, f ,  r) = r ~ [ H s ~  + H ~ = "  n 2 ( ~ , / '  + ~ ' ) ] .  
o~o  

The s t r u c t u r e  o f  q u a s i - p o l y n o m i a l  ( 2 . 6 )  and t h e  e x p l i c i t  e x p r e s s i o n  f o r  t h e  f u n c t i o n a l  
L~i make it possible to isolate the bifurcatively unstable modes of equilibrium. In fact, 
let ~, 0, and n be fixed and Zn = 0, p~ {Pn}" The minor solution gn(6) will be bifurcatively 
unstable if the equation G($n, 8, 0) = 0 is solvable at 6 > 0 for some disturbances S(r) and 
solvable at 8 < 0 for other disturbances. In physical terms, this definition means that the 
type of branching and the mechanical phenomena that accompany it depend for unstable modes 
on the distribution of the external load. It follows from the application of Poiseuille's 
theorem to (2.6) that for such a property to exist, it is sufficient that there be a change 
in the sign of the coefficient L~l for different Sn(r). It should be noted that, in accor- 
dance with the method of its derivation, the quantity L~I corresponds to the work of the ex- 
ternal force for the minor equilibrium mode. Thus, it is natural to consider as stable those 
solutions $n(8) whose neighborhood does not depend on the sign of the work variation. The 
criterion of branching instability is evident from this and the properties of the functional 

We introduce the set Bn + ~ {r]g~'(r)>O}, B~- = {r]g~'(r)<O}. If B~§ "B~-=~, then the 
minor solution $n(6) is unstable. Thus, to establish this property for the solution of 
Marguerre-Vlasov problem (i.i), it is sufficient to integrate system (2.4) and check to see 
whether or not the function g~(r) is sign-changing. 

Let ~n ~ 0. In accordance with [5], the sign of the 6-neighborhood of $n(6) for a 
spherical shell with sufficiently small geometric flaws is independent of these disturbances. 
Meanwhile, the function sign 6 has one sign at ~n = 0 and Zn ~ 0, ITnl ~ i. However, the 
study of Eq. (2.6) is considerably more complex at ~n v 0, since it contains two independent 
parameters 6 and ~n" 

Using the Weierstrass approximation theorem, we construct the below Weierstrass poly- 
nomial for Gn($n, 6, <n): 

~ 3 + HI~ 2 + H~ %. + H~, = 0 ,  (2 .7)  
n n n --i H ~ = ( t / 4 )  L ~ ( L ~ ) - ~ a +  . . . .  H~ = L  n(L30 ) 5 +  . . . ,  ~ = 0 ( 8 ) ' +  . . .  

H e r e ,  o n l y  t h e  d om i nan t  t e r m s  a r e  p r e s e n t e d  f o r  t h e  a n a l y t i c  f u n c t i o n  H~(8,  ~n) (k = 0,  1, 2 ) .  

We p i c k  o u t  t h e  v a l u e s  o f  5 and z n t h a t  l i e  on t h e  d i s c r i m i n a n t  l i n e .  I n  o r d e r  t o  do 
t h i s ,  t h e  P o i n c a r 6 - L y a p u n o v  p a r a m e t e r  mus t  s i m u l t a n e o u s l y  make i d e n t i c a l  t h e  W e i e r s t r a s s  
p o l y n o m i a l  and t h e  e q u a t i o n  

3 ~  2 + 2 H 2 ~  + H~ ~ : 0. ( 2 . 8 )  

L e t  us  o b t a i n  t h e  r e s u l t a n t  ~ (8, T~) f o r  ( 2 . 7 ) - ( 2 . 8 ) .  Us ing  t h e  Newton d i a g r a m  method and 
t h e  P o i s e u i l l e  t h e o r e m ,  we o b t a i n  f rom t h e  r e q u i r e m e n t ~ ( 8 ,  T,) = 0 t h e  p e r t u r b a t i o n  o f  t h e  
eigenvalue of the flawed shell 

3 L3% (~ L ~ / [ ~  ~/3 ~ 
6 4 7F , n w~zo ,  + O ( x l / z ) ,  Ln--/=O, Lao=/=O. ( 2 . 9 )  

L ~  

S e v e r a l  c o n c l u s i o n s  f o l l o w  f rom ( 2 . 9 ) .  

I n  t h e  s e q u e n c e  {Pn}, o r d e r e d  w i t h  r e s p e c t  t o  t h e  v a l u e  o f  t h e  p - c o o r d i n a t e s  o f  t h e  
branch point, it is possible to have a redistribution occur with a change in the type of bi- 

m m 
furcation if at the beginning of the spectrum the function sign (L~0Lzl) is greater than zero 
for some n = m and the function sign (L~0L~i) is less than zero for other n = k. In the first 
case, 6 < 0. Thus, Pm, corresponding to the eigenfunction having the rotation group C m, 
undergoes a decrease. In the second case, Pk increases. When crowding occurs in {Pn} due 
to a singular perturbation, this leads to a situation whereby the sign of the inequality 

Pm > Pk may be reversed by a suitable choice of ~m and <k" In this case, the amplitudes of 
the geometric flaws turn out to be very small, since we are dealing here only with those 
elements from {Pn} that satisfy the estimate 

Ipm--p~I<C~.mV, ~<<I (2.10) 

(Ck, m are constants independent of ~, Ck, m ~ i). 
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n n 
Thus, it is clear that the change in sign near p* for the function sign (L30L11) must 

n n 
be considered when studying the mechanism of instability. If L30 and L11 are of fixed sign 
for the first elements of the sequence {Pn}, then we reason as we did above and conclude 
that redistribution in {Pn} also occurs with sufficiently large geometric flaws. In a new 
sequence of branch points {p[} ordered with respect to the p-coordinate, there is a change 
in the correspondence between the number of the eigenvalue and the group rotation of the 
eigenfunction. However, unlike before, in this case there is no change in the type of branch- 
ing of the minor equilibrium modes. 

It is evident that the quantitative characteristics of the difference between {Pn} and 
{p[} depend on ~(r) ~(~). 

3. An approximate analysis of boundary-value problems performed by W (2.2), (2.3) by 
the variational method [6-8] with q = i, k = 2. For U < ~0, ~0 ~ i, we replaced (~, f) in 
the calculations by the zeroth terms of an expansion in integral powers of ~ [9] 

9 
(r, ~) N Y~ ~i [~i (r) + ni~ (~)], 

i=0 

J 
l ( r ,  ~) ~ Y, ~i [h(r)  + ~il(m)], ~ = ~ -- r. 

~=o 

Here, (')i and Hi(.) are constructed by using the first and second steps in the method of 
boundary-layer functions. The existence of the asymptote is proven on the basis of the New- 
ton-Kantorovich method if segments of the series at 7 ~]<~ [I0] are taken as the initial 
approximation. The required a priori estimates were obtained only for 3~ < 82p. This lim- 
itation and the results calculated for different ~ allowed us to take 10 -4 for ~0. The 
asymptotic expansions were substantiated and the corresponding calculations were performed 
in accordance with a well-established method. Nonetheless, the question of their validity 
in (i.i) remains unanswered. The reason for this is the difficulty of assigning the order 
of the mechanical quantities in (1.2) at ~ § 0. The choice k = 2 is almost obvious [4], 
but it is difficult to determine the order of the nonlinear terms. The fact that q = I is 
of interest in regard to substantiation of the asymptote becomes evident only in the course 
of the calculations [6, 7]. No axisymmetric branch points were found for other k and q. 

Equations (2.3)-(2.5) were analyzed by the method of orthogonal trial run [4, ii]. To 
improve the stability of the calculation, the Schmidt orthogonalization process was replaced 
in [4] by calculation of the basis with transformations of the reflection. A description of 
this modification of the trial run method was given in [Ii] (S. K. Godunov pointed out the 
expediency of this approach to the author). 

Figure I shows the distribution function of the nonaxisymmetric branch points. Here and 
below, 8 = 0.15, ~ = i0 -~, n = 0.3. The function was introduced by means of the formula 

N , ( L )  = ~(~h4 1 - -  ~h)-I [~ + kLh+ 1 _ (k + i )Lh ], ( 3 .  i) 

I n  a c c o r d a n c e  w i t h  ( 3 . 1 ) ,  t h e  o n l y  v a l u e s  o f  h h a v i n g  m e c h a n i c a l  s i g n i f i c a n c e  a r e  t h o s e  f o r  
w h i c h  t h e  e q u a l i t y  Entier(~-~N~(~)) = ~ - ~ N , ( ~ ) - i s  s a t i s f i e d .  I t  i s  e v i d e n t  t h a t  Nn(X) h a s  two 
b r a n c h e s  N~(X) ,  N~(X) and t h a t  h = 0 - t h e  b e g i n n i n g  o f  t h e  s p e c t r u m  - i s  a b r a n c h  p o i n t .  A 
s m a l l  v a l u e  was c h o s e n  f o r  n so  t h a t ,  w i t h i n  a p r a c t i c a b l e  r a n g e  f o r  c o n v e r g e n c e ,  N~(X) w o u l d  
c o i n c i d e  w i t h  N0(X) , w h e r e  N0(~ ) = ]im N g ( L ) .  T h u s ,  N~(X) i n  F i g .  1 g i v e s  t h e  a s y m p t o t e  o f  t h e  
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spectrum of critical pressures. Evaluating it by means of the constant in (2.10), it is 
easily seen that C k m § mink,m at X § 0. This in turn means that p* is a condensation point 
of the sequence {Pn~" 

Figure 2 shows Tn(~) = 10gn(~) for N~ = 0.329, N + = 0.385, N~ = 0.245 (lines 1-3). We 
used the normalization condition llmnl; c = ~ in every case. Since both multipliers Bn + and B n 
are nontrivial, then we can conclude on the basis of the proposed criterion that the minor 
equilibrium mode corresponding to each curve in Fig. 2 is bifurcatively unstable. This mode 
exists at 6 > 0 for some disturbances S(r) and at 6 < 0 for other disturbances S(r). 

We introduce the new variable m = ~-I(i - r) into fn(r). We will regard the functional 
L n) from (2.6) as a Fredholm integral operator assigned for the elements fn(m). Figure 3 
shows its kernel Dn(T ) for n = Entier(~-iNp), Np = 0.329, 0.385, 0.315 (curves 1-3); Dn(~) 
is localized at �9 < 20. This inequality indicates the size of the region checked for im- 
perfections in a thin shell. The existence of extrema in Dn(T) determines the values of m 
for which the change in the form of the middle surface produces the largest change in the 
disturbance of critical pressure with a fixed amplitude of T n. Figure 4 shows the law 
governing redistribution in the spectrum of the flawed shell. The curves were plotted with 

1 

G(r)  = c o n s t  and L~ = s u p  [/n(r)  Dn(o~n, q~n, o~,/, r)dr, / n ~  C. Here ,  y = t02(~n ~- 8/p*), ~txn ---- 103T~, 
.in(r) 

and,  as  b e f o r e ,  t h e  r o t a t i o n  g roup  C,~ of  t h e  e i g e n f u n c t i o n  i s  d e t e r m i n e d  t h r o u g h  N~ = 0 . 3 3 5 ,  
0 . 3 2 9 ,  0 . 3 2 5 ,  0 . 2 9 5 ,  0 .305  ( l i n e s  1 - 5 ) .  The c u r v e s  c h a r a c t e r i z e  t h e  method o f  l o s s  o f  s t a -  
b i l i t y .  I f  y l i e s  on t h e  da shed  c u r v e ,  t h e n  b r a n c h i n g  o f  t h e  mode o f  e q u i l i b r i u m  i s  accom- 
p a n i e d  by r u p t u r e  o f  t h e  s h e l l .  O t h e r w i s e ,  b u c k l i n g  t a k e s  p l a c e .  We w i l l  f i r s t  r e s t r i c t  
o u r s e l v e s  t o  two d i s c r i m i n a n t s  ( c u r v e s  2 and 5 ) .  At x n = 0, t h e  minimum b r a n c h  p o i n t  l i e s  
a t  t h e  p o i n t  (0 ,  0 ) .  An i n c r e a s e  in  x n i s  accompan ied  by an i n c r e a s e  in  one e i g e n v a l u e  and 
a d e c r e a s e  in  t h e  o t h e r .  I f  x n i s  e q u a l  t o  t h e  a b s c i s s a  o f  p o i n t  a ,  t h e n  t h e  c r i t i c a l  p r e s -  
s u r e  w i l l  be t w i c e  d e g e n e r a t e .  F u r t h e r  d i s p l a c e m e n t  o f  x n t o  t h e  r i g h t  l e a d s  t o  a s i t u a t i o n  
whereby t h e  f i r s t  e i g e n v a l u e  a g a i n  becomes s i m p l e ,  bu t  t h e r e  i s  a change  in  C n and t h e  mode 
of  i n s t a b i l i t y .  The p r e s e n c e  o f  two d i s c r i m i n a n t s  may i n c r e a s e  t h e  maximum m u l t i p l i c i t y  o f  
t h e  d e g e n e r a c y .  I n  p a r t i c u l a r ,  t h e  l a t t e r  r e a c h e s  f i v e  f o r  d i s t u r b a n c e s  f o r  which  x n i s  
e q u a l  t o  t h e  a b s c i s s a  o f  p o i n t s  a ,  b ,  c ,  and d. G e n e r a l l y  s p e a k i n g ,  m u l t i p l e  c r i t i c a l  p r e s -  
s u r e s  e x i s t  when t h e  f u n c t i o n a l s  o f  Eq. ( 2 . 6 )  and t h e  a m p l i t u d e s  o f  t h e  g e o m e t r i c  f l a w s  s a t -  
i s f y  t h e  c o n d i t i o n  

p + 6 (Lso, LI~, L n ~ )  = const 
~' (3.2) 

simultaneously for several n. 

Above, we examined only one limiting property of nonaxisymmetric branching. In the 
other case, we can assign w~(r, ~)~ ~r (~), so that no other point except the first will exist 
in a certain neighborhood of the beginning of the spectrum {Pn}" In fact, for the sake of 
definiteness we will take two similar elements ps and Pk from ~s = 0.329, ~k = 0.335. It 
is evident that two sufficiently large nonintersecting segments of the parameter p exist 
for pz and Pk if the condition Imp[ >> [mz[" is satisfied for the geometric flaws of the middle 
surface. 

Let us summarize the results. 

i. A thin flawed spherical shell becomes unstable due to rupture. 

2. By varying the distribution of the geometric flaws and the amplitudes, we can use 
(2.9) to model the range of cases of loss of stability if crowding occurs in the critical- 
pressure spectrum of the perfect shell. 

The expediency of accounting for this effect in the development of the branching theory 
of stability has been discussed repeatedly in [12-17]. 

In accordance with current representations, the supercritical deformation of a thin 
spherical shell corresponds to a chain of successive branchings. Meanwhile, the wide range 
of modes of instability is related not so much to the numlber of branch points in an indi- 
vidual chain as it is to the possibility of there being a large number of such chains [8]. 
In connection with this, redistribution at the beginning of the spectrum is of particlar 
interest, since it reveals the mechanism of "creation" of the first point in the above-de- 
scribed model of instability. 

3. Branching of the solution without degeneracy remains typical for small p > 0. To in- 
crease the multiplicity of the critical pressure, it is necessary that condition (3.2) be satisfied. 
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It should be noted that the radii of the middle surface basically did not figure into 
our discussions at all, while the main formula (2.9) does not contain parameters of the shell 
in explicit form. Numerical values of the coefficients of the branching equation are needed 
to concretize the above-described method of choosing the geometric flaws that change the 
eigenvalues to the prescribed values. Discussed below is one possible application of the 
method based on the use of Eq. (2.9). 

4. We will examine the stability of a cylindrical shell compressed by an axial force o 
and subjected to local thermal shock in the region ~0. Figure 5 shows the results of an ex- 
periment for a target made of steel KhI8N9T. The thickness of the shell h = 10 -3 m. At its 

t ! 

ends r = R, ~ [0, 2~], z =0, L we adopted conditions of rigid fastening w ~ w z = 0, v ~u~ == 
0, where w, v, and u are the normal and tangential displacements in the directions e~ and ez, 
respectively; (R, ~, z) are the coordinates of the cylindrical system. One distinctive feature 
of the tests was the range of variation of the energy flux and the time of action of the 
radiation. The unit we used made it possible to achieve 1 kJ for the former quantity and a 
value on the order of 10 -3 sec for the latter quantity. The energy flow in the problem had 
a nonuniform (pitch) structure with one pitch lasting 10 -I sec. It is known that the results 
of such local thermal loads are determined by the power density Q. On the whole, in the case 
we are considering the value of Q was greater than its critical value Q*, which is associated 
with the beginning of phase transformations in the target within a certain region Q' c ~0. 
The physical processes accompanying these transformations were described in [19]. The method 
used to conduct the experiment was described in greater detail in [20, 21]. 

Figure 5 shows the characteristic rhomboid mode of instability, the region ~0 near the 
common edge, and the irregular boundary 8~'. The following formulation is interesting for 
such a problem. Let the parameters of the local heat flux and the thin shell of revolution 
be given. We need to determine the dependence of the branch point on the diameter D of the 
region ~0. 

Due to the obvious complexity of modeling the physicomechanical phenomena which take 
place here, we will use the theory of initial supercritical strain to evaluate the critical 
force 6 o caused by the action of the radiation. We will refine 6o by specially choosing the 
imperfections of the middle surfce. Specifically, we continuously extend the Marguerre- 
Vlasov system into the thermal-shock region ~0 so that the shell occupies the simply-con- 
nected region ~ x L instead of a doubly-connected region. We represent its geometric flaws 
in the form of the sum wx(z, ~) +Wx(z, ~). Each term has the same rotation group as the first 
natural mode of a perfect shell whose edges are rigidly fastened. The Young's modulus, 
Poisson's ratio, and geometric parameters L/R, h/R of the perfect shell coincide with the 
analogous values for the shell subjected to electrophysical loading. We further assume that 
W~(z, ~) is nontrivial only in a band of width D containing ~0 and that the dependence of 
wx(z, ~) on z is described by the indicated eigenfunction. With allowance for these assump- 
tions, we have [5, 22] 

6~ I~ = ~ l ] / - -  3b ~ (~n ~ CKD) ~/~*, 8~ = i - -  I~/o*~ ( 4 . 1 )  

n n b ~ ~-  - -  Lso /LI :  = - -  0 . 8 2 7 .  

Here, o is the critical force for the shell subjected to electrophysical loading; o* = 
min,{~n}; @n is the point of the cylindrical shell with w~(z, ~)~0, W~(z, ~)~---0;Tn = h-:llw, ll=; 
C is a constant determined by the type of geometric imperfection of the region ~0; K is a 
free parameter; s is the ratio of the bifurcative force measured in the experiment to its 
value for the perfect cylindrical shell in the absence of loading. 
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Figure 6 compares theoretical and experimental forces for L/R = 2. The value of a 
obtained from Eq. (2.9) is designated by points I, while the data obtained from direct mea- 
surements is shown by the line and points 2. The parameter K was determined from the con- 
dition of agreement of the theoretical value of o and the experimental value with D = 15 
m.10 -s. Here, it was found that K = 2.71 at T n = 0.332, C = 0.0196, and s = 0.474. It is 
evident that the branch points can be predicted by the methods of eigenvalue perturbation 
theory with the use of data from just one control experiment involving determination of the 
free parameter K of discriminant curve (4.1). 
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